- · Electronic multiturn gear
- Hollow shaft up to ø 28 mm or shaft ø 12 mm
- Shock resistant up to 250 g
- Only 50 mm clearance needed
- Easy mounting of the hollow shaft version. The encoder is mounted directly on the drive shaft without coupling.
- Multiturn up to 8192 (13 bits) resolution, 4096 (12 bits) number of furn
- SSI interface, additional interfaces include RS 485 and OEM specific protocolls
- Protection: IP 65
- optional with incremental track 2048 ppr.
- (Ex) available as explosion proof zone 2 and 22

1) for continuous operation 3000 min⁻¹ 2) at shaft version only (at shaft end)

Mechanical characteristics:

Speed: ¹⁾	max. 6000 min ⁻¹
Rotor moment of inertia:	appr. 65 x 10 ⁻⁶ kgm ²
Starting torque hollow shaft version:	< 0,2 Nm
Starting torque shaft version:	< 0,05 Nm
Radial load capacity of shaft (hollow shaft): ²⁾	80 N
Axial load capacity of shaft: (shaft):2)	40 N
Weight:	appr. 0,7 kg
Protection acc. to EN 60 529:	IP 65
Working temperature:	−20° C +70 °C
Shaft:	stainless steel
Shock resistance acc. to DIN-IEC 68-2-27	2500 m/s ² , 6 ms
Vibration resistance acc. to DIN-IEC 68-2-6:	100 m/s ² , 10 2000 Hz

Electrical characteristics:

Interface type:			Synchronous-Serial (SSI) with outputs
General:			
Supply voltage (U _B):			5,0 30 V DC ³⁾
Current consumption type (no load).:			89 mA
max (no load):			138 mA
Short circuit proof outputs:1)			yes ²⁾
Reverse connection protection at U _B :			yes
SSI-Interface:			·
Output driver:			RS 485
Permissible load/channel:			max. +/-20 mA
Update rate for position data:			appr. 1600/s
SSI pulse rate min./max./pulse frequency:			100 kHz/500 kHz
Signal level high:			typ. 3,8 V
Signal level low (I _{Last} = 20 mA):			typ. 1,3 V
Rise time t _r (without cable):			max. 100 ns
Fall time t _f (without cable):			max. 100 ns
Control inputs:	Voltage:		5 30 V DC = U _B
(V/R, SET)	Response time	: :	10 ms
	Signal level:	low	max. 25 % U _B
		high	min. 60 % U_B , max. U_B
	Max. current lo	oad	≤0,5 mA
Status outputs:	Output driver:		Push-Pull
	max. permissil	ole load:	±9,0 mA
	Signal level	high:	min. $U_B -3.0 V$
		low:	max. 1,5 V
	Rise time:		max. 240 μs
	Fall time:		max. 300 μs
Incremental outputs (A/B):	Output driver:		RS422 compatible
	Puls frequency	' '	200 kHz
	Signal level	high:	4,5 V
	Signal level	low ($I_{Last} = 20 \text{ mA}$):	
	Rise time (with	,	max. 200 ns
	Fall time (without	,	max. 200 ns
Class R	50082-2, EN 500	081-2 and EN 55011	

- 1) when U_B supply voltage correctly applied U_B
- ²⁾ Only one channel at a time: When $U_B = 5$ V DC, short-circuit to output, 0 V and + U_B is permitted. When $U_B < 5$ V DC short-circuit to output and 0 V is permitted.
- 3) Please note: the minimum voltage supply must be 5.0 V DC

Performance against magnetic influence acc. to EN61000-4, 5

MultiturnType BAMH 90 SSI or RS 485

Control inputs:

F/R input for change of direction

The encoder can output increasing code values when the shaft is rotated either clockwise or counter-clockwise (when looking from the shaft side).

The appropriate option can be selected via a hardware configuration of the F/R input BEFORE powering up the encoder.

The following table shows the function selection dependent on the hardware and software settings:

Hardware configuration of the F/R input:

Hardware configuration of the F/R input	Function: increasing code value when the shaft is in the following direction:
"low" (0 V) on the F/R input (= cw)	CW
"high" (+U _B) on the F/R input (= ccw)	CCW
"low" (0 V) on the F/R input (= cw)	CCW
"high" (+UB) on the F/R input (= ccw)	CCW

Notes

- Any hardware configuration of the F/R input must take place BEFORE powering up the encoder!
- If the F/R input is not configured, then a 0 V configuration will apply (default condition)!
- If the direction of rotation is changed due to the F/R configuration, without activating the SET function again, and if the encoder is also then powered up again, a new position value may be outputted, even if the physical shaft position of the encoder has not moved! This is due to internal conversion processes.

The start-up procedure for the encoder should therefore follow this sequence:

- 1. Determine the count direction of the encoder via the F/R input
- 2. Apply power to the encoder
- 3. Activate the SET function, if desired (see SET input below)
- If using a cable wire to configure the F/R input, then for EMC reasons the wire should not remain open but should be tied either to 0 V or UR!
- The response time of the F/R input with $U_B = 5 \dots 30 \text{ V}$ DC power supply is 10 ms.

SET inputs

This input is used to reset (to zero) the encoder. A high control pulse (+U_R) applied to this input for a minimum of 10 ms will reset the current encoder position to the pre-programmed setpoint value.

- The SET function should only be implemented when the encoder shaft is at rest.
- For the duration of the SET pulse the SSI interface does not function and therefore does not output any valid position values!
- If using a cable wire to configure the SET input, then for EMC reasons the wire should not remain open but should be tied either to 0 V or UB!
- The response time of the SET input with $U_B = 5 \dots 30 \text{ V}$ DC power supply is 10 ms.

Encoder outputs¹⁾:

A1: battery control* A2: not activated* A3: not activated*	
A3: not activated*	
A4: not activated*	

The outputs are not activated in the factory setting (default). They can be activated and defined by the factory $\mathbf{e}.$ $\mathbf{g}.$ limit switch, overspeed and temperature control etc.

1) not available for versions with incremental track

* can be activated by factory

BAMS 90 BAMH 90

MultiturnType BAMH 90 SSI or RS 485

Terminal assignment SSI Synchronous Serial interface with 12pin plug

Signal:	OV	+U _B	+T	-T	+D	-D	ST	VR	A1	A2	A3	A4	Shield
Pin:	1	2	3	4	5	6	7	8	9	10	11	12	PH
Col.:	WH	BN	GN	YE	GY	PK	BU	RD	BK	VT	GY PK	RD BL	

- T: Clock signal
- D: Data signal
- ST: SET input. The current position value is stored as new zero position (or the actual value is set to the preset value when using the programmable version).
- VR: Up/down input. As long as this input is active, decreasing code values are transmitted when shaft turning clockwise.
- A1, A2, A3, A4: outputs programmable by factory

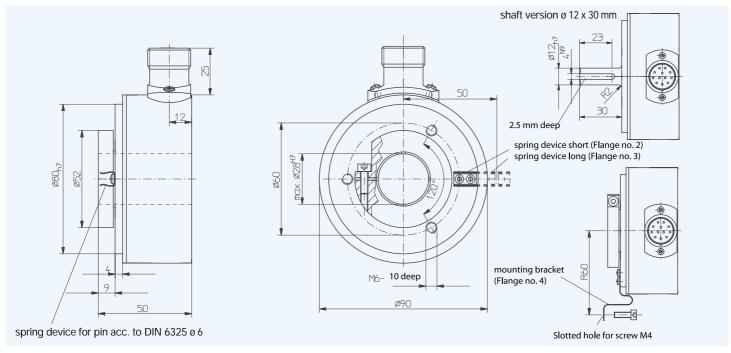
PH: Plua housina

Insulate unused outputs before initial start-up

Terminal assignment RS 485 and 12pin plug

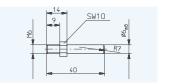
Signal:	OV	+U _B	T/R-	T/R+				VR					Shield
Pin:	1	2	3	4	5	6	7*	8	9	10	11	12	PH
Col.:	WH	BN	GN	YE				RD					

- R: Receive-channel
- T: Transmit-channel

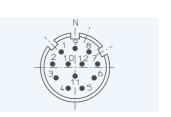

- VR: Up/down input. As long as this input (High-Level = +U_B) is active, decreasing code values are transmitted when shaft turning clockwise.
- PH: Plug housing

*There is no set input for P3001 version, but it can be realised

SSI interface with incremental track (A, B):


Signal:	0 V	+U _B	Clock+	Clock-	Data+	Data-	Set 0	VR	B	В	Ā	Α	Shield
Pin:	1	2	3	4	5	6	7*	8	9	10	11	12	PH

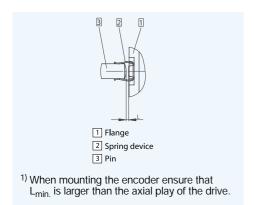
Dimensions:

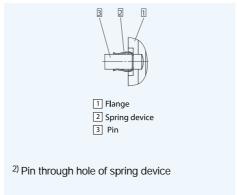

Mounting advice:

- 1) Do not connect encoder and drive rigidly to one another at shafts and flanges!
- ²⁾ Delivery includes a corresponding cylin-dric pin (see drawing), when the encoder is ordered with flange type 2 (short spring device) or type 3 (long spring device).

Top view of mating connector, male contact base:

12 pin plug




BAMS 90 BAMH 90

MultiturnType BAMH 90 SSI or RS 485

Max. permissible drive shaft impact:

Type of flange:	Permissible axial impact	Permissible radial play	Permissible angular play
Flange type 2 (short spring device):	max. ±1 mm ¹⁾	max. ±0.3 mm	max. ±2°
Flange type 3 (long spring device):	∞2)	max. ±0.3 mm	max. ±2°
Flange type 4 (mounting bracket):	max. ±0.5 mm	max. ±0.3 mm	max. ±2°

ORDERING CODE Multiturn BAMH 90

Flange

- 1 = without mounting aid
- 2 = with short spring device
- 3 = with longspring device
- 4 = with mounting bracket

Shaft Ø

- 12 = hollow shaft ø 12 mm
 - 15 = hollow shaft ø 15 mm
 - 20 = hollow shaft ø 20 mm
 - 21 = hollow shaft ø 24 mm
 - 28 = hollow shaft ø 28 mm

BAMS 90x12 = shaft ø 12 x 30 mm

Interface and supply voltage

- 2 = SSI, 5 ... 30 V DC
- 3 = RS 485, half-duplex 5 ... 30 V DC internal termination
- 5 = SSI, 5 ... 30 V DC, with incremental track 2048 ppr (A, B)
- 7 = RS 485 halfduplex 5 ... 30 V DC external termination
- 8 = RS 485-Interface, halfduplex-mode
- 9 = ESC-protocol max. 38400 baud

Connection

6R = 12 pin plug without mating connector

Code

G = Gray B = Binary

SSI-Interface

1212 = 4096 x 4096 (24-Bit)

1312 = 8192 x 4096 (25-Bit)